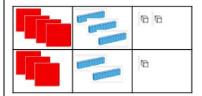
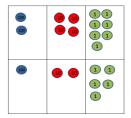
Addition

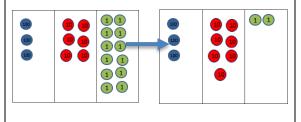
Subtraction

Division

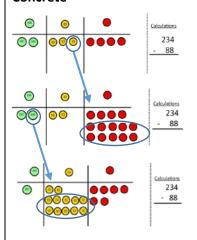

Mental methods

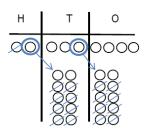

These should continue to develop, supported by a range of models and images, including the number line. Part-part-whole and bar models should continue to be used to help with calculating.

Addition of numbers with up to 3-digits using expanded column addition


Start with calculations without regrouping before introducing numbers that require regrouping in an expanded column method.

Concrete


Leading into the understanding of regrouping


Subtraction of numbers with up to 3digits using expanded column subtraction

Start with calculations without regrouping with 3-digits to consolidate year 2 knowledge before introducing numbers that require regrouping in an expanded column method.

Concrete

Pictorial

Abstract

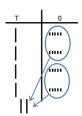
Step 1

Mental methods

Doubling 2 digit numbers using

Multiplication

partitioning

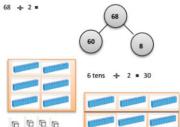

Multiplication of 2 digit by a 1 digit using partitioning

Concrete

Use resources to partition and rearrange $4 \times 15 =$

Pictorial

Abstract

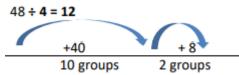


 $10 \times 4 = 40$ $5 \times 4 = 20$ 40 + 20 = 60

Division using partitioning

Becoming more efficient using a number line.

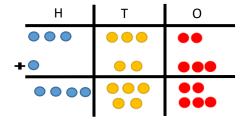
Concrete



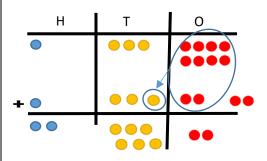
68 + 2=30+4=34

Pictorial

Abstract


$$40 \div 4 = 10$$

 $8 \div 4 = 2$


So,
$$48 \div 4 = 12$$

Division with remainders

Concrete

Pictorial

Abstract

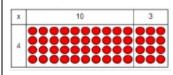
+ 300 60 8 800 60 2 100 10

	700	20	3
-	300	40	6

Step 2

		10	13
	700	20	3
-	300	40	6
			7

Step 3


	600	110	13
	700	20	3
-	300	40	6
	300	70	7

Multiplication of 2 digit by a 1 digit using an informal written method – grid method

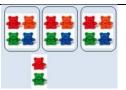
Concrete

Use counters, place value counters and base 10 to represent calculations in a grid layout

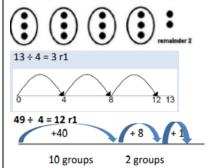
13 x 4 =

Х	Tens	Ones
4	2889	0000

Х	Tens	Ones
4		


Pictorial

Represent the grid method by drawing versions of the concrete in books


					10								8			
3	0	0	0	0	300	0	0	0	0	0	0	0	24	0	0	
	0	0	0		0 0		0		0	0	0	0	0 0	0	0	

Abstract

	10	8
3	3 0	2 4

Pictorial

Abstract

49 ÷ 4 =

$$40 \div 4 = 10$$

 $9 \div 4 = 2 r 1$
So, $49 \div 4 = 12 r 1$

Sharing – 49 shared between 4. How many left over? Grouping – How many 4s make 49? How many are left over?