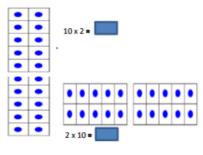

Subtraction of 2-digit numbers without exchanging

Concrete

///

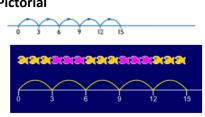

Pictorial

Draw given repeated addition and multiplication equations to 88 solve 88 10 15

Abstract

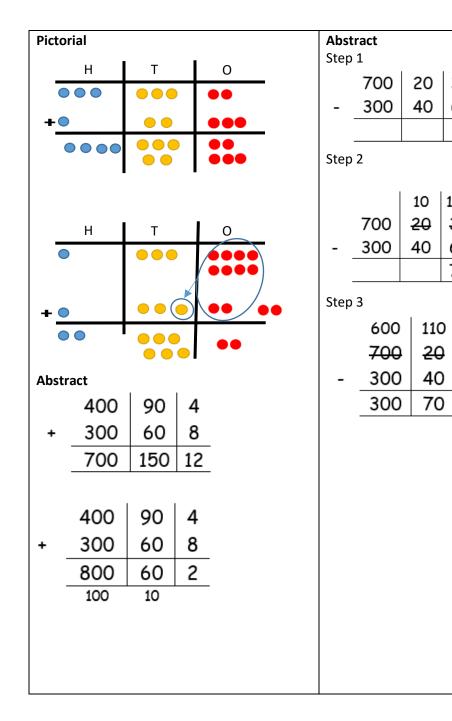
Write and solve equations demonstrating the link between repeated addition and using 'x' to show 'lots of' or 'groups of'. 4 + 4 + 4 = 12 $4 + 4 + 4 = 3 \times 4$ $3 \times 4 = 12$ **Develop understanding of commutativity** by expressing arrays as multiplication number sentences

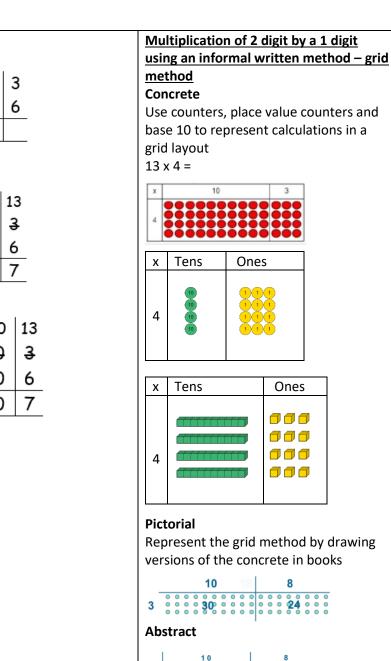
Concrete and pictorial



Abstract Solve missing number problems 7 x 2 = 🗆 $\Box = 2 \times 7$ 7 x □ = 14 14 = 🗆 x 7 $\Box x 2 = 14$ 14 = 2 x 🗆

□ x () = 14 14 = □ x ()

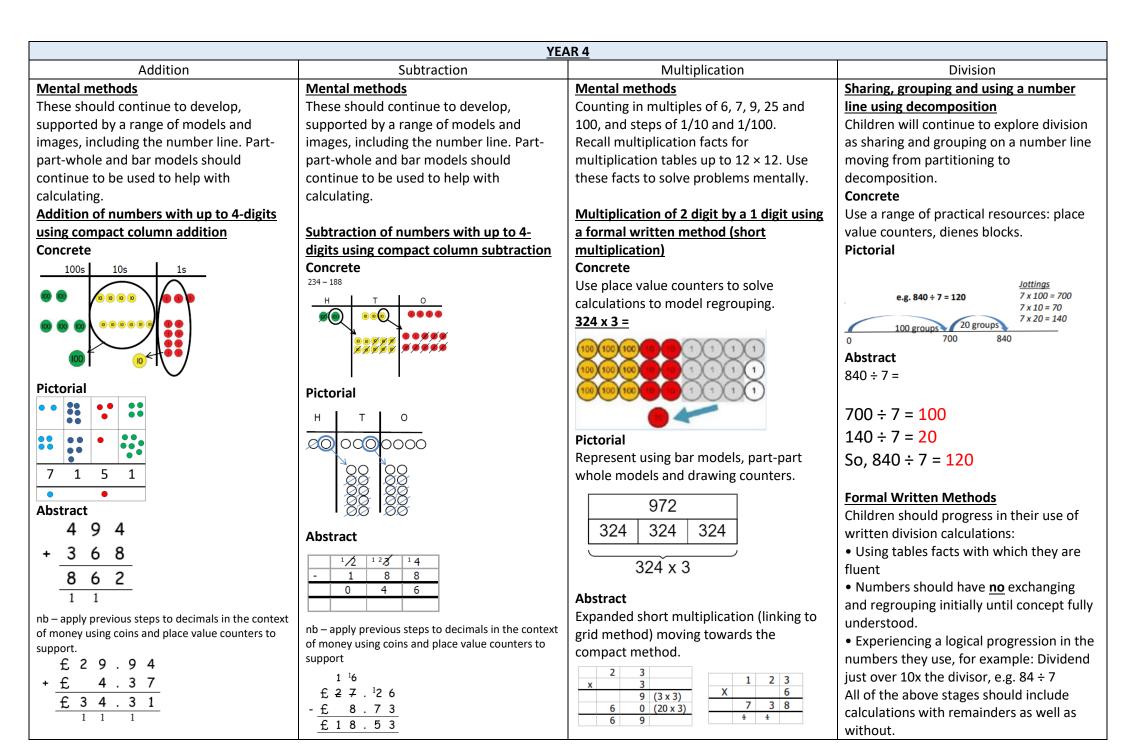

Pictorial

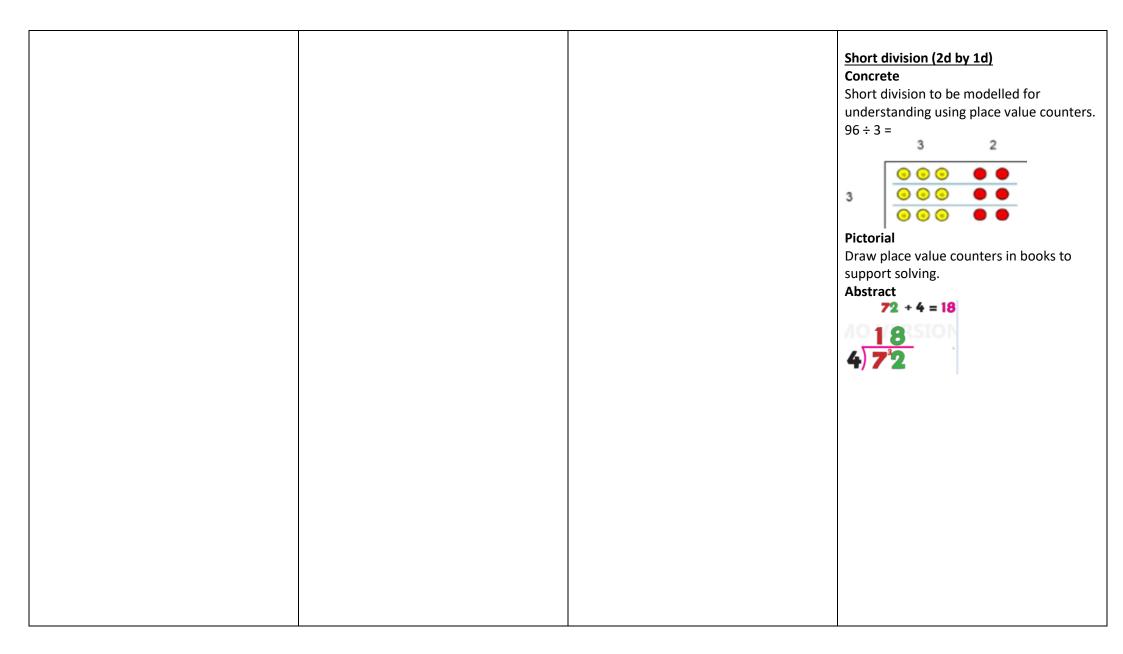

88

Abstract Know grouping- introducing children to the ÷ sign.

Year 3						
Addition	Subtraction	Multiplication	Division			
Mental methods	Subtraction of numbers with up to 3-	Mental methods	Division using partitioning			
These should continue to develop, supported	digits using expanded column	Doubling 2 digit numbers using	Becoming more efficient using a number			
by a range of models and images, including	subtraction	16 partitioning	line.			
the number line. Part-part-whole and bar	Start with calculations without					
models should continue to be used to help	regrouping with 3-digits to consolidate	10 6	Concrete			
with calculating.	year 2 knowledge before introducing	■ x2 ■ x2 20 12	68 ÷ 2 =			
	numbers that require regrouping in an					
Addition of numbers with up to 3-digits	expanded column method.	Multiplication of 2 digit by a 1 digit	60 8			
using expanded column addition	Concrete	using partitioning	6 tens ÷ 2 = 30			
Start with calculations without regrouping	🐵 💿 🛡 Gatulations	Concrete				
before introducing numbers that require		Use resources to partition and rearrange				
regrouping in an expanded column method.	<u>- 88</u>	4 x 15 =				
Concrete		FF FF FF FF	000			
D D D			8 ones + 2 =			
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
			68 ÷ 2=30+4=34			
		Pictorial	Pictorial			
		4 x 15 =	48 ÷ 4 = 12			
		4 x 15 -	\square			
			+40 +8			
	Pictorial		10 groups 2 groups			
	234 – 188 =		Abstract			
	231 100		48 ÷ 4 =			
	н Т Т о		+0 . + -			
Leading into the understanding of regrouping			$40 \div 4 = 10$			
		Abstract				
		4 x 15 =	8 ÷ 4 = 2			
		\frown	So, 48 ÷ 4 = <mark>12</mark>			
	88 88	(15)				
			Division with remainders			
			Concrete			
		$10 \times 4 = 40$				
		$5 \times 4 = 20$ 40 + 20 = 60				
			•			

3


30


24

Pictorial

Sharing – 49 shared between 4. How many left over? Grouping – How many 4s make 49? How many are left over?

<u>YEAR 5</u>						
Addition	Subtraction	Multiplication	Division			
Mental methods	Mental methods	Mental methods	Formal Written Methods			
These should continue to develop,	These should continue to develop,	Mental methods X by 10, 100, 1000 using	Children should progress in their use of			
supported by a range of models and	supported by a range of models and	moving digits. Use practical resources and	written division calculations:			
images learnt in previous years. Children	images learnt in previous years. Children	jottings to explore equivalent statements	 Using tables facts with which they are 			
should practise with increasingly large	should practise with increasingly large	(e.g. 4 x 35 = 2 x 2 x 35).	fluent			
numbers to aid fluency	numbers to aid fluency	Solving practical problems where children	• Experiencing a logical progression in the			
		need to scale up. Relate to known number	numbers they use, for example:			
Addition of numbers more than 4-digits	Subtraction of numbers more than 4-	facts.	1. Dividend just over 10x the divisor			
using compact column addition	digits using compact column subtraction	Identify factor pairs for numbers.	when the divisor is a teen number,			
Using the same representations as Year 4,	Using the same representations as Year 4,		e.g. 173 ÷ 15 (learning sensible			
children will deepen their understanding	children will deepen their understanding	Written methods (progressing to 4d x 2d)	strategies for calculations such as			
of the compact column method and apply	of the compact column method and apply	Concrete	102 ÷ 17)			
this knowledge to larger numbers.	this knowledge to larger numbers.	Long multiplication using place value	2. Dividend over 100x the divisor,			
		apparatus.	e.g. 840 ÷ 7			
Addition of decimal numbers within the	Subtraction of decimal numbers within		3. Dividend over 20x the divisor, e.g.			
context of measure	the context of measure	Abstract	168 ÷ 7			
When teaching measure, children will	When teaching measure, children will	Expanded long multiplication moving	Remainders should be interpreted			
calculate with decimals using the compact	calculate with decimals using the compact	towards the compact method.	according to the context. (i.e. rounded up			
column method where appropriate. Use	column method where appropriate. Use		or down to relate to the answer to the			
representations from previous year	representations from previous year	32 38	problem).			
groups to support understanding.	groups to support understanding.	x 24 X 27				
		$8 (4 \times 2) - 266 (28 \times 7)$	Short division (progressing to 4d by 1d)			
		120 (4 X 30)	Concrete			
		40 (20 x 2) 760 (38 x 20) 600 (20 x 30) 1026	Short division to be modelled for			
			understanding using place value counters.			
		1	Pictorial			
		8 7 ×	Draw place value counters in books to			
		2 5	support solving			
		4 3 5	Abstract			
		3	930 ÷ 3 930 30 ÷ 3 = 10			
			/ \ 900 ÷ 3 = 300			
		2 1 7 5	900 30 930 + 3 = 310			
			930 + 3 =			
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
			900 30 30			
			$\frac{-30}{0} \longrightarrow 10$			

	$ \begin{array}{c} 144\\ 4 576\\ \underline{-400}\\ 176\\ \underline{-160}\\ 16\\ \underline{-16}\\ 0\\ \end{array} $ $ \begin{array}{c} 1 2 3\\ 5 6 11 15\\ \end{array} $

	<u>YE</u> 4	<u>NR 6</u>							
Addition	Subtraction	Multiplication	Division						
Mental and written methods	Mental and written methods	Mental and written methods	Formal Written Methods – long and sho					g and short	
Mental methods should continue to	Mental methods should continue to	Mental methods X by 10, 100, 1000 using	division						
develop, supported by a range of models	develop, supported by a range of models	moving digits involving decimals.	Con	tinue	to d	evelo	p un	derstar	nding of
and images with increased fluency.	and images with increased fluency.	Identifying common factors and multiples	shor	t div	ision	and i	ntro	duce de	ecimals.
Children should be able to choose the	Children should be able to choose the	of given numbers							
most efficient method and explain why	most efficient method and explain why	Solving practical problems where children	Long	g divi	sion	(prog	gressi	ing to 4	ld by 1d)
they chose it.	they chose it.	need to scale up. Relate to known number	Con	Concrete					
		facts.	Long	g divi	sion	to be	mod	elled fo	or
Written methods should progress to larger	Written methods should progress to larger		und	ersta	ndin	g usir	ng pla	ce valu	e counters.
numbers, aiming for both conceptual	numbers, aiming for both conceptual	Written methods	Pict	orial					
understanding and procedural fluency	understanding and procedural fluency	Continue to refine and deepen	Drav	<i>w</i> pla	ce va	alue c	ount	ers in b	ooks to
with columnar method to be secured.	with columnar method to be secured.	understanding of written methods	support solving						
Continue calculating with decimals,	Continue calculating with decimals,	including fluency for using long	Abstract						
including those with different numbers of	including those with different numbers of	multiplication				2	1	2	
decimal places	decimal places		1	2	2	5	4	4	
					2	4			
						1	4		
						1	2		
						_	2	4	
					-		2	4	
								U	